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SYNOPSIS 

The effects of voids on the response of a rubber poker chip sample are examined. A theoretical 
estimation of the diametral contraction of the sample was performed, using the linear 
theory of stress analysis. Experimental measurements of the lateral contraction at  the 
middle plane of the poker chip elastomer specimen have shown that the testing rubber is 
not incompressible. By comparing the experimental data with the theoretical predicted 
equation, the value of the Poisson’s ratio v.8 was found to be 0.487, for a given aspect ratio 
a* of the sample. A theoretical equation for the volume dilatation of the poker chip rubber 
sample was developed. Using the given aspect ratio, the value of ue8, and the experimental 
stress/strain curve of the sample, an estimation of the volume dilatation was formed. The 
effective Poisson’s ratio was also found using the linear stress analysis, by comparing the 
developed mathematical equations for an incompressible rubber with voids with a com- 
pressible one. 

INTRODUCTION 

In the previous articles, 1,2 it was experimentally 
shown (using the acoustic emission technique) that 
microvoids exist within a poker chip sample when- 
ever it is subjected either to tension or compression. 
It was found that the voids are responsible for the 
drop of the apparent modulus of the elastomeric 
poker chip specimen. 

The aim of this article is to propose a theoretical 
background for the decrease of the apparent mod- 
ulus. First of all, a mathematical equation was de- 
veloped for the diametral contraction of the poker 
chip sample at  the middle plane, using the linear 
stress analysis. 

Second, experimental measurements were made 
on the deflected sample in order to measure the lat- 
eral contraction in the middle plane as a function 
of the strain. Experimental measurements have 

shown that the deflected rubber poker chip is no 
longer incompressible due to microvoids. 

A mathematical expression was developed for the 
volume dilatation of the sample, as will be presented 
in Section 5. Using Schapery’s e q ~ a t i o n ~ - ~  for the 
normalized apparent modulus M / E  and the exper- 
imental data, an estimation of the effective Poisson’s 
ratio veff was made. 

EXPERIMENTAL 

Theoretical Prediction of the Diametral 
Contraction of a Poker Chip Elastomer Sample 

The geometry and the coordinate system of the 
poker chip sample used for the analysis are shown 
in Figure 1. Let a and h denote the radius and the 
thickness of the specimen, respectively. Following 
the linear stress analysis, it can be shown (see Ap- 
pendix) that the displacement u ( r ,  z )  and w ( z )  are 
given by 
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Figure 1 
system used in the stress analysis. 

Triaxial poker chip test and the coordinate 

where 

and Il ( p )  and v denote the modified Bessel function 
of first order and the Poisson's ratio, respectively. 
Coefficient A is given by 

3VU.€ 
(1c) A = -  

2{(1  - v)XaIo(Xa - ( 1  - 2 v ) 1 1 ( X a ) }  

where Io(Xa)  and E defines the modified Bessel 
function of zero order and the strain in the z direc- 
tion. 

Substitution of eq. ( l c )  into eq. ( l a )  yields the 
lateral contraction -& ( a )  / a  at  the middle plane of 
the poker chip and the outer edge ( z  = 0, r = a ) ,  
i.e., 

where parameter m is given by 

When a + 0, then Xu + 0, and by expanding the 
I,,( xu) and Il ( x u )  around zero, it can be easily shown 
that m + 2 and eq. (2a) yields 

When a --* co, then I o ( x a ) / I l ( X a )  N 1 and m * 
X U ,  hence, 

where a* = a / h  (aspect ratio). 
A typical value of a* for our experimental 

studies'" is about a * = 8. For this value of the aspect 
ratio, parameter m is close to Xu; hence, the lateral 
contraction -%(a)  / a  at the central plane is given 
via eq. (3b). For a more precise value of the lateral 
contraction, we use eq. (2a), estimating the modified 
Bessel functions by using either tables or IMSL 
computer subroutines. A plot of the diametral con- 
traction 6 = -uo ( a )  / U E  as a function of the effective 
Poisson's ratio v,ff is given in Figure 2. 

Experimental Measurements of the Diametral 
Contraction of an Elastomer Poker Chip Sample 

The experimentally determined lateral contraction, 
-u,-,(a)/a, at the middle plane of the poker chip 
sample subjected to tension and compression as a 
function of strain is given in Figure 3. It was exper- 
imentally measured with a caliper. All the data 
points fall on a straight line whose slope is y 
= 0.269. The mathematical equation that describes 
the experimental relationship between the lateral 
contraction and strain ( AL/Lo) is given by 

0.45 OA6 0.47 Oh8 0&9 0.50 
Vef f 

Figure 2 
son's ratio V,~. 

Diametral contraction 6 vs. the effective Pois- 
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Figure 3 Observed values of the lateral contraction 
- A h ( u ) / a  as a function of the strain t of the rubber 
poker chip sample. 

uo(a )  - 0.269-t (4)  
U 

where a is the radius of the elastomer disc. Equation 
(4)  indicates that the diametral contraction derived 
by the longitudinal strain, 6 = -uo ( a )  / a  - t, is equal 
to y = 0.269. Referring to Figure 2, the effective 
Poisson's ratio is equal to v,s = 0.487. This low 
value of the Poisson's ratio indicates that the elas- 
tomer poker chip sample (whose chemical compo- 
sition was given in ref. 1 )  is not incompressible. 

However, we know that a homogeneous unfilled 
nitrile rubber is nearly incompressible (i.e., v = 0.5). 
Why does such an apparent contradiction exist? We 
attribute this contradiction to the existence of voids 
in the poker chip test sample. It was shown in pre- 
vious papers1T2 that the voids are created during the 
molding process of the sample. The magnitude of 
the voids within the sample subjected to tension and 
compression was estimated using the frequency 
spectrum of the detected acoustic waveforms.'.' 

Volume Dilatation, AV/Vo 

It can be shown (see Appendix) that the volume 
dilatation of the elastomer poker chip specimen is 
given by 

- = [  AV ( 1  - v ) m  - 1 
( 1  - v ) m  - (1 - 2v) Vo 

c defines the longitudinal strain. When a + 0, then 
m --+ 2 and eq. ( 5  ) yields 

- (1 - 2 v ) . t  
AV 
VO 
-- 

For an incompressible elastomer disc, v + 0.5; hence, 
AV/ Vo -P 0, i.e., no volume dilatation exists. When 
a 03, then rn + xu and eq. (5) yields 

] a t  (6b) 
a * i 6 ( 1  - 2v)( l  - V )  - 1 %= [ a * i 6 ( l  - 2v)( l  - v )  - ( 1  - 2v) 

where a* is the aspect ratio (a* = a / h ) ,  which is 
about a* = 8 for our experimental studies.',2 The 
parameter x was given in Section 3. 

Substituting the values of a* = 8 and v = 0.487 
into eq. (6b),  the volume dilatation of the tested 
elastomer disc is equal to 

- 0.5976 
AV 
VO 
-- (7)  

Hence, the volume dilatation for the rubber poker 
chip considered here as a function of the strain (a t  
low strain) is a linear function of strain whose slope 
is equal to @ = 0.597. A typical stress-strain curve 
at low strain of a poker chip sample is given in Figure 
4. We observed that the yield point occurs at 10% 
strain, where the volume dilatation according to eq. 
( 7 )  is 0.0597. 

where Vo = m 2 h ,  the initial volume of the sample; 
AV = V - Vo ( V  = final volume) ; v denotes the 
effective Poisson's ratio; m is given via eq. ( 2b) ; and 

0 20 40 
strain %(in/in) 

Figure 4 
a function of strain (a t  low strain). 

Applied stress on the poker chip specimen as 
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Determination of the Apparent Modulus, M, of an 
Elastomer Poker Chip 

It can be shown (see Appendix ) that the normalized 
apparent modulus, M I E ,  of a poker chip specimen 
is given by 

M 1 
E 
- =  

(1 - 2v)(1 + V )  

] ( 8 )  
2v2 

(1 - v ) m  - (1 - 2v) 

where E defines the Young’s modulus of the material. 
For the elastomeric material used in this study, ‘s2 we 
determined E to be 

When a --+ 0, then m + 2 and eq. (8) yields M /  
E + 1. When a --* a, then m + Xa and eq. (8) 
yields 

to 1.413 N/mm2. 

2v2 
a * i 6 (  1 - 2v)( 1 - v )  - (1 - 2v) 

- 

Equation (9)  yields the ratio M / E  as a function of 
the aspect ratio a* and the Poisson’s ratio v. Letting 
a* = 8, then using either the tables or the IMSL 
computer subroutines, the ratio M / E  can be deter- 

mined for different values of v. Figure 5 shows the 
normalized modulus, M / E ,  versus the Poisson’s ra- 
tio v. 

Our experimental work has shown that the ratio 
M / E  is equal to 7.87, which leads to a value of the 
Poisson’s ratio approximately equal to v = 0.487. 
Therefore, the effective Poisson’s ratios determined 
from the stress-strain curve and from the diametral 
contraction have the same value. 

CONCLUSIONS 

In this study, we have developed a mathematical 
background for the growth of microvoids within a 
deflected elastomer poker chip disc. Using linear 
stress analysis, we developed a mathematical 
expression for the diametral contraction of the sam- 
ple as a function of the Poisson’s ratio, the aspect 
ratio of the sample and the strain. Experimental 
measurements of the diametral contraction as a 
function of the strain have shown that all the points 
fall on a straight line of slope y = 0.269 (for small 
strain). Using the experimental data and the theo- 
retically predicted equation, the effective Poisson’s 
ratio was found to be equal to veff = 0.487. Hence, 
the rubber subjected either to compression or tension 
is no longer incompressible. The same result can be 
arrived at by measuring the volume dilatation of the 
poker chip sample. The effective Poisson’s ratio veff 
can also be determined using the developed math- 
ematical equation for the normalized apparent 
modulus, M I E ,  of the rubber disc. 

APPENDIX 

Computation of the Displacement and the Stress 
Field within a Poker Chip Specimen with Voids 

Let us assume that the displacement field within the de- 
formed poker chip sample is given by 

u( r ,  z )  = ug( r )  ( 1  - 4 z 2 / h 2 )  (A.1) 

w ( z )  = w(z)(arbitrary) (A.2) 

In eq. ( 1) it was assumed that the profile in the z-direction 
is parabolic. Since, 

u ( r ,  h/2 )  = 0 (A.3 ) 

the incompressibility equation (written in cylindrical co- 
ordinates) implies that 
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where w, denotes the derivative of w with respect to the 
z-coordinate. Also, the w -displacement on the upper plate 
of the sample is given by 

w(h /2 )  = th /2  (A.5) 

where t denotes the strain within the poker chip sample. 
Substitution of the displacement components u ,  w into 

linear stress-displacement axisymmetric  equation^,^ we 
obtain 

1 - 2v 
2G 

1 - 2u 

+ ( ~ - u ) w ’  (A.6.3) 2G 

1-2u  1 2 v [  8hy] 
- 7 r z = -  -- 2G 2 

(A.6.4) 

where G and v represent the shear modulus and the Pois- 
son’s ratio, respectively. 

Taking the average of eqs. ( 6 )  along the z-direction, 
we get 

( l - v ) u b + v -  + u t  (A.7.1) “I r 
1 - 2v 

2G 

V U ~ + ( ~ - V ) -  + U C  (A.7.2) “1 r 
1 - 2v 

2G 

1 - 21, 
2G 

where V is the shear at  z = h/2,  and 

h / 2  

( * ) d z  
h - h / 2  

The equilibrium equations are7*’ 

au, ur - a7, 
dr r az - +- + - = O  

The auerage of eq. (8.1) upon z is 

(ar)-  ( (To)  2 v  + - = o  
r h (a,) + 

(A.7.3) 

(A.7.4) 

(A.7.5) 

(A.7.6) 

(A.8.1) 

(A.8.2) 

(A.9 1 

Substitution of eqs. (7 )  into eq. (9)  yields the following 
modified Bessel equation : 

(A.lO) r 

where 

.=-[-I 2 3 - 6 u  ’ I 2  

h 2 - 2 v  
( A . l l )  

The solution of eq. (10) is given as a function of the mod- 
ified Bessel functions Zl ( p )  and Kl ( p )  : 

Since 4 ( p  = 0) is finite and Kl (0) is infinite, the constant 
B must vanish. Hence, eq. (1) takes the form 

(A.13) 

At  the free surface of the poker chip, the normal and the 
shear components of the stresses must vanish, i.e., 

u,(p = xa) = ~ , ( p  = xa) = 0 (A.14) 

Substitution of eq. ( 13) into eq. (6.1 ) and using eq. ( 14),  
one gets 

-1.5vta 
(1 - v)xaZo(xa) - (1 - 2v)Z1(xa) 

A =  (A.15) 

The dilatation 8 is given via the following equation: 

U 
8 = u, + - + w’ (A.16) r 

where u, = du/dr and the average upon z is 

2 
( 8 )  = 5 [ ub + “1 + c (A.17) 

Replacing ~0 and its derivative ugnto eq. ( 17) ,  we obtain 

(1 - 2v)[XaZo(Xa) - Z1(xa)] 
( 8 )  = t (A.18) 

( 1  - u)xaZo(xa) - (1 - 2u)Z1(xa) 

The volume fraction of the voids is 

(A.19) 
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After integration, the AV/ V, becomes 

where 

(A.21) 

With substitution of ~0 into eq. (7.3) and integration upon 
r ,  we obtain the load T o n  the poker chip plates, i.e., 

Et 
(1 - 2v)(1 - v )  

T =  

] (A.22) 
2v2 

(1 - v)m - (1 - 2v) 

Parameter m is defined via 

(A.23) 

T/c defines the modulus of the poker chip sample; hence, 

M 
E 

1 
(1 - 2v) ( l  - V )  

- - _  

1 2 v z  
(1 - v )  m - (1 - 2 v )  

(A.24) 
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